
Smart Contract Code

Review And Security

Analysis Report

Customer:

Societe Generale Forge (SG Forge)

Date: 06/06/2024

We express our gratitude to the Societe Generale Forge (SG Forge) team for the collaborative

engagement that enabled the execution of this Smart Contract Security Assessment.

Platform: EVM

Language: Solidity

Tags: ERC20

Timeline: 23/05/2024 - 06/06/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository Code provided in a zip file.

Commit -

2

https://hackenio.cc/sc_methodology

Audit Summary

10/10 9/10 95.45% 89/10
Security score Code quality score Test coverage Documentation quality score

Total 9.5/10
The system users should acknowledge all the risks summed up in the risks section of the report

2 0 1 1
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 1

Low 1

Vulnerability Status

F-2024-3285 - Use of constructor in upgradeable contract Mitigated

F-2024-3306 - Asset wiping in wipeFrozenAddress function Accepted

3

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/a6305e16-e714-4005-a3c6-34009426ca5c
https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/0962b507-5de1-4c09-ae1e-8e65f68c37d4

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for Societe

Generale Forge (SG Forge)

Audited By Carlo Parisi

Approved

By
Przemyslaw Swiatowiec

Website https://www.sgforge.com/product/coinvertible/

Changelog 24/05/2024 - Preliminary Report

06/06/2024 - Final Report

4

https://www.sgforge.com/product/coinvertible/

Table of Contents

System Overview 7

Privileged Roles 7

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 14

Disclaimers 18

Appendix 1. Severity Definitions 19

Appendix 2. Scope 20

System Overview

SMART_COIN is an ERC20, with the following contracts:

SmartCoin — ERC20 extended with:

UUPS upgrade mechanism

Operator Roles: registrar, operations, technical. These roles are introduced to manage the

upgrade to new implementations and control transfers of tokens amongst these roles.

EncodingUtils - a library that has the functionality to compute the hash of transfer requests

AccessControlUpgradeable - an abstract contract that handles the access control for the

SmartCoin contract.

Privileged roles

Registrar operator:

Manages Whitelist of authorized users.

Validates/Rejects transfers to registrar and operations operators.

Names the operators for the new implementation.

Authorizes the upgrade to the next implementation.

Cannot be used as spender or destination of transferFrom().

Can retrieve tokens from any address to itself.

Can mint and burn SmartCoin tokens.

Operations operator:

Cannot be used as spender or destination of transferFrom().

Transfers to operations must be validated by the registrar.

Technical operator:

Launches a previously authorized (by registrar) implementation upgrade.

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation quality score is 9 out of 10.

Functional requirements are mostly provided.

Technical description is not provided.

NatSpec is sufficient.

Code quality

The total Code quality score is 9 out of 10.

Gas consumption could be optimized.

Test coverage

Code coverage of the project is 95.45% (branch coverage).

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 1 medium, and 1 low severity issues.

Out of these, 0 issues have been addressed and resolved, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.5. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

SmartCoin is an ERC20 token that has centralized features, the tokens can be frozen or burned

by the admins of the protocol.

This audit covers the SmartCoin.sol contract, which is designed to be upgradeable. However,

the audit does not cover the reliability of the first version (v1) of the contract, future versions, or

potential mistakes that could be made by the admin during the upgrade process. This limitation

could leave potential vulnerabilities undetected in the contract's lifecycle.

8

Findings

Vulnerability Details

F-2024-3285 - Use of constructor in upgradeable contract - Medium

Description: The AccessControlUpgradeable.sol contract uses a constructor to

initialize the registrar, operations, and technical addresses.

However, in the context of upgradeable contracts in Solidity, constructors

should not be used. This is because the constructor code is only run when

the contract is first created and will not be included in the deployed

bytecode. As a result, when the contract is upgraded, the constructor will

not be run again, and the state variables will not be re-initialized.

Additionally, constructors in upgradeable contracts should call

_disableInitializers() to prevent the initializer from being called

more than once.

Assets:
smartCoin/AccessControlUpgradeable.sol [N/A]

Status: Mitigated

Classification

Impact: 5/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Likelihood [1-5]: 2

Impact [1-5]: 5

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 3.5 (Medium)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

9

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/a6305e16-e714-4005-a3c6-34009426ca5c

Remediation: To resolve this issue, consider using an initializer function instead of a

constructor. The initializer function can be run manually after the contract

is deployed to set the initial state. Also, ensure that the registrar,

operations, and technical variables are not declared as immutable

since immutable variables can only be set in the constructor and cannot

be changed later, which is not suitable for upgradeable contracts.

Resolution: The client has mitigated the inherent risk of sharing the same immutable

value throughout all proxies that share that implementation contract. Team

declared that this behaviour would not affect their contract upgrade

processes.

10

F-2024-3306 - Asset wiping in wipeFrozenAddress function - Low

Description: The wipeFrozenAddress function in the SmartCoin.sol contract

transfers the balance of a frozen address to the registrar and then burns

the transferred amount. However, if there is a transaction pending

approval or rejection when an address gets frozen, and the

wipeFrozenAddress function is called, the assets involved in the

pending transaction will not be wiped. This is because the

wipeFrozenAddress function only considers the current balance of the

frozen address, not the assets in pending transactions. This could result in

the frozen address retaining assets if the pending transaction is rejected

after the address has been wiped.

Assets:
smartCoin/SmartCoin.sol [N/A]

Status: Accepted

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Dependent

Complexity: Simple

Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 1.8 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: To ensure all assets are wiped from a frozen address, the registrar should

first reject any pending transactions from the frozen address before

calling the wipeFrozenAddress function. Alternatively, the

wipeFrozenAddress function could be modified to automatically reject

any pending transactions from the frozen address.

11

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/0962b507-5de1-4c09-ae1e-8e65f68c37d4

Observation Details

F-2024-3283 - Unnecessary gas consumption in wipeFrozenAddress

function - Info

Description: The wipeFrozenAddress function in the SmartCoin.sol contract

transfers the balance of a frozen address to the registrar, and then burns

the transferred amount. This two-step process of transferring and then

burning tokens results in unnecessary gas consumption, as each

operation requires its own transaction and gas fees.

Assets:
smartCoin/SmartCoin.sol [N/A]

Status: Fixed

Recommendations

Remediation: To optimize gas usage, consider implementing a direct burn function that

can burn tokens from the frozen address in a single operation. This would

eliminate the need for the intermediary transfer to the registrar, thereby

reducing the overall gas cost.

12

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/da1de546-ca97-43ee-a6e9-3d1b1e518f93

F-2024-3284 - Redundant gas consumption in decreaseAllowance

function - Info

Description: The decreaseAllowance function in the SmartCoin.sol contract

includes the forbiddenForRegistrar and forbiddenForOperations

modifiers. These modifiers check whether the _spender is the registrar or

an operator. However, since the allowance cannot be approved or

increased for the registrar and the operator, these checks are

unnecessary and result in a waste of gas.

Assets:
smartCoin/SmartCoin.sol [N/A]

Status: Fixed

Recommendations

Remediation: To optimize gas usage, consider removing the forbiddenForRegistrar

and forbiddenForOperations modifiers from the decreaseAllowance

function.

13

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/8be401ed-2266-4982-83b4-47e32308d9fc

F-2024-3304 - Redundant gas consumption in pause and unpause

functions - Info

Description: The pause and unpause functions in the

AccessControlUpgradeable.sol contract include the

onlyWhenNotPaused and onlyWhenPaused modifiers respectively.

These modifiers check the current state of the contract before allowing

the functions to proceed. However, since these functions are only callable

by the registrar who should be aware of the contract's state, these

checks are unnecessary and result in a waste of gas.

Assets:
smartCoin/AccessControlUpgradeable.sol [N/A]

Status: Accepted

Recommendations

Remediation: To optimize gas usage, consider removing the onlyWhenNotPaused and

onlyWhenPaused modifiers from the pause and unpause functions

respectively.

14

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/ee373384-638f-4fa0-98bc-76d674030f36

F-2024-3305 - Incorrect comment in ISmartCoin.sol - Info

Description: The comment above the ISmartCoin.sol interface states that all

transfers need to be validated by an operator (the registrar operator)

before the tokens are actually transferred. However, this is not accurate.

Only transfers to the operator or registrar need to be validated, not normal

transfers.

/**

* @dev This interface is a slightly modified version of the IERC20 standard inte

* To comply with the financial regulations(KYC, AML, Sanctions&Embargos), transfe

* before the tokens are actually transferred

*/

Assets:
smartCoin/ISmartCoin.sol [N/A]

Status: Fixed

Recommendations

Remediation: To avoid confusion and potential misuse of the interface, the comment

should be corrected to accurately reflect the functionality of the contract.

15

https://portal.hacken.io/App/Projects/Details/bb47ff60-7799-40dd-aa1b-493775271cea/Finding/02c663d0-4581-49cc-9d76-946db953de8d

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

16

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

17

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository Code provided in a zip file.

Commit -

Whitepaper -

Requirements -

Technical Requirements -

Contracts in Scope

libraries/EncodingUtils.sol

smartCoin/ISmartCoin.sol

smartCoin/IAccessControl.sol

smartCoin/SmartCoinDataLayout.sol

smartCoin/SmartCoin.sol

smartCoin/AccessControlUpgradeable.sol

smartCoin/AccessControlDataLayout.sol

18

